INÍCIO ARTIGOS ESPÉCIES GALERIA SOBRE EQUIPE PARCEIROS CONTATO
 
 
    Artigos
 
Identidade do Caridina “Crystal/Bee”
 
Walther Ishikawa - Sobre o artigo de Klotz & Rintelen 2014, e desdobramentos



Sobre o artigo de Klotz & Rintelen 2014 - Identidade do Caridina “Crystal/Bee”

 


Introdução – identificação de espécies através de testes genéticos


Ferramentas moleculares de identificação foram desenvolvidas inicialmente para estudar relações entre indivíduos, desde simples Testes de Paternidade até estudos de árvores filogenéticas entre espécies. Uma aplicação direta desta tecnologia é a identificação de espécies baseada em amostras teciduais. Tem extenso uso em veterinária forense, identificando espécies a partir de carcaças ou pequenas amostras de sangue e tecidos. Um exemplo interessante é a identificação de espécies protegidas e ilegais de baleias a partir de amostras de carne comercializada em mercados asiáticos.


As técnicas mais tradicionais utilizavam testes imunes e eletroforese de proteínas, mas têm sido cada vez mais substituídos por novas ferramentas usando ácidos nucleicos, com uma série de vantagens em termos de sensibilidade, especificidade e acurácia. Além da precisão muito superior, a análise pode ser feita a partir de amostras pequenas, mais degradadas, ou fixadas em coleções.




Estruturas de uma típica célula eucariótica, destaque para Mitocôndria e Núcleo celular. Ilustração de CFCF para Anatomy & Physiology, Connexions Web site. Licença Creative Commons. Arquivo original pode ser visto aqui



DNA mitocondrial e DNA nuclear


Quando se pensa em DNA no interior da célula, imediatamente vem à mente o material genético encontrado no núcleo celular. Na reprodução sexuada, há fusão do DNA nuclear (nDNA) do espermatozóide e do óvulo, por exemplo em seres humanos, os 23 cromossomos do pai e os 23 da mãe se combinam, totalizando os 46 cromossomos das nossas células. Porém, existe outro local dentro da célula onde existe DNA: na mitocôndria. Possui um sistema próprio de replicação, transcrição e translação.


Com poucas exceções, as células de espécies eucarióticas possuem mitocôndrias, uma diminuta organela envolta por uma membrana própria, que gera boa parte do ATP (fonte de energia) da célula. É uma organela muito especial, porque é a única que possui um material genético próprio. Acredita-se que a mitocôndria seja um vestígio de uma bactéria endosimbionte que foi incorporada no citoplasma da célula hospedeiro em algum momento do seu passado evolutivo.


Já vimos que há combinação do nDNA paterno e materno quando há reprodução. Porém, na grande maioria dos organismos com reprodução sexuada, o DNA mitocondrial (mtDNA) é herdado somente da mãe. O mtDNA do pai é destruído ou não-incorporado no processo.



Heranças de DNA nuclear e DNA mitocondrial. Ilustração original de University of California, Licença Creative Commons. A página da Understanding Evolution pode ser vista aqui



O mtDNA do filho é idêntico ao mtDNA da mãe. Porém, ao longo de muitas e muitas gerações, o mtDNA tem uma relativamente alta e constante taxa de mutação, com uma velocidade de evolução acelerada. Implica em variações de sequência de graus variados que podem ser detectados e quantificados, a fim de graduar a distância evolutiva dentre espécies, ou mesmo indivíduos de uma mesma espécie. Estas pequenas variações também permitem identificar locais de ramificações de ancestralidade, e construir complexas árvores filogenéticas. Já que a taxa de mutação destes genes é sabida, pode-se estimar também o momento quando estas bifurcações ocorreram no passado. Por este motivo, alguns chamam o mtDNA de “relógio molecular”.


Em 1987, o mtDNA foi usada por cientistas da Nature para traçar uma ancestralidade materna dos seres humanos até a África, a famosa “Eva” mitocondrial de 200.000 anos atrás.


Em cada célula de mamíferos, há cerca de 1700 mitocôndrias, respondendo por cerca de 1~2% do total de DNA. Em seres humanos, há 37 genes em cada mitocôndria, e 70.000 genes nucleares em cada núcleo celular. Embora a quantidade total de genes do nDNA seja muito maior, e, neste sentido, a identificação de espécies seja mais precisa usando-se esta ferramenta, a taxa de mutação de nDNA é mais baixa, espécies diferentes mas próximas podem ter muitos loci em comum, e serem indistinguíveis.


Estas diferenças entre nDNA e mtDNA são bastante interessantes, e trazem vantagens e desvantagens para análises isoladas dos dois tipos de material genético. Geralmente são usadas preferencialmente mtDNA, mais simples, facilitando bastante a interpretação dos resultados de árvores genéticas. Em comparação ao nDNA, o mtDNA pode ser isolado de amostras de cabelo, de amostras teciduais degradadas e escassas, já que possui muitas cópias por célula.




Caridina logemanni, foto de Chris Lukhaup.


Metodologia do trabalho dos Drs. Klotz e Rintelen


Em 2014, os Drs. Werner Klotz e Thomas von Rintelen publicaram na revista Zootaxa o artigo intitulado To “bee” or not to be — on some Ornamental Shrimp from Guangdong Province, Southern China and Hong Kong SAR, with Descriptions of Three New Species. O trabalho é muito rico, com descrições de novas espécies, seus estágios larvares, relações filogenéticas, etc. Além da repercussão no meio científico, o artigo foi bastante comentado em meios aquarísticos (fóruns, sites, blogs), pela descrição de duas novas espécies: a primeira é o Caridina mariae, que é o “Tiger Shrimp” criado há muito tempo em aquários, mas cuja espécie não havia sido identificada ainda. A segunda é a Caridina logemanni, que foi interpretada como sendo a espécie de aquários “Bee Shrimp” ou “Crystal Shrimp”. Quanto ao C. logemanni, veremos que não é exatamente isso, a verdade é um pouco mais complexa.


De fato, os autores fizeram uma interessante descoberta, uma nova espécie de camarão que tem o aspecto idêntico aos “Bee” selvagens tradicionalmente criados em aquários, batizada de Caridina logemanni. Existem diversas outras espécies com faixas escuras e claras largas (“padrão Bee”, como o C. trifasciata, C. maculata, C. venusta e Paracaridina zjinica, inclusive com mutações vermelhas), mas a que mais se parece com o “Bee” selvagem é o C. logemanni. Foi coletado somente em três pequenos córregos montanhosos na região dos Novos Territórios, Hong Kong. Nenhuma outra espécie de camarão vivia junto com eles, mas grandes populações de C. cantonensis, uma espécie com ampla distribuição na região, eram encontradas em riachos próximos.


Apesar de serem espécies bastante próximas filogeneticamente, o aspecto das duas difere bastante: O C. logemanni tem o típico aspecto de “Bee”, com várias faixas largas de cor marrom enegrecida na carapaça e abdômen, enquanto o C. cantonensis não tem faixas, somente um corpo homogêneo translúcido com pequenas manchas escuras (veja fotos). E certamente trata-se de espécies distintas, com distâncias genéticas grandes o suficiente para serem caracterizadas como tal.


 

Foram realizadas também análises genéticas para a identificação das diversas espécies. Excetuando-se as Paracaridinas, Tigers e grupos de controle, foi realizada a análise molecular de 53 espécimes de Caridina, na sua maioria de exemplares selvagens coletados, mas que incluíam também 9 camarões ornamentais (Dr. Klotz, com. pess. 21/10/2019):

- Dois camarões comprados em lojas chinesas de aquarismo.
- Dois camarões de uma importadora alemã (selvagens "Diamond Bee" coletados em Hong Kong).
- Três camarões de aquaristas alemães ("Red Wine Taiwan Bee", "Snow White Ueno Line" e "Crystal Black").
- Dois camarões "New Bee" de um aquarista alemão.



Foi realizada a análise de dois genes do mtDNA, o “16S” (que codifica o 16S rRNA, envolvido na síntese proteica mitocondrial) e “COI” (que codifica a subunidade I da enzima Citocromo Oxidase , envolvido na fosforilação oxidativa).


Dos 9 exemplares ornamentais de aquário (todos com faixas, “padrão Bee”), os resultados foram (para 16S):

- 2 camarões comprados em lojas da China: formam um clado irmão aos identificados como C. trifasciata, mas com uma distância grande o suficiente para sugerir se tratar de uma espécie distinta.
- 2 camarões "New Bee" de um aquarista alemão: foram identificados morfologicamente e geneticamente como C. venusta.
- Um dos camarões "Diamond Bee" coletados em Hong Kong: foi identificado morfologicamente como C. logemanni, mas geneticamente se agrupa com os quatro abaixo, dentro do clado C. cantonensis.
- O outro "Diamond Bee" coletados em Hong Kong, e os três camarões ornamentais de aquaristas alemães: inseridos geneticamente no clado do C. cantonensis.


A COI não pôde ser amplificada em vários espécimes, resultando em um conjunto de dados menor. Somente foi possível analisar dois exemplares de aquário, um dos que formam um clado irmão ao C. trifasciata, e um dos inseridos no clado do C. cantonensis. Ou seja, confirmam e reforçam os achados do 16S.

 



Caridina cantonensis, foto de Paul Ng Y.C.


Conclusões do trabalho - Identidade do Caridina “Crystal/Bee”?


Parece claro que alguns camarões ornamentais de aquário pertencem às espécies C. venusta e C. trifasciata (ou uma espécie muito próxima a esta última). Estas duas espécies mostram um fenótipo do tipo “Bee”, mesmo em animais coletados na natureza. Deve-se concluir que uma parcela dos camarões “Bee” criada em aquários no mundo devem ser destas duas espécies, especialmente os selvagens.


A grande dúvida é em relação aos demais cinco camarões, todos com um fenótipo “Bee”. Somente um selvagem foi identificado morfologicamente como C. logemanni, os demais têm morfologia indeterminada, mas com um padrão “Bee”. Curiosamente, todos os seis (inclusive aquele com morfologia de C. logemanni) foram identificados geneticamente como C. cantonenis, uma espécie sem faixas. Como isto é possível? Vamos discutir duas possibilidades:


 

1. O problema dos híbridos


Para o mtDNA, híbridos possuem somente a assinatura genética da sua herança materna. Desta forma, uma análise isolada do mtDNA não é adequada para a identificação de espécies, nos casos onde existe a possibilidade de hibridização, como populações em zonas de fronteira entre distribuição de duas espécies próximas, ou criação conjunta em cativeiro de duas espécies próximas. Nestes casos, dados mitocondriais devem ser suplementados com ferramentas moleculares baseadas em genes nucleares, que têm herança biparental.


Na realidade, a simples discordância entre a análise do mtDNA e nDNA (neste último, seja por análises cromossômicas ou fenotípicas) é uma boa dica de que pode ter havido hibridização. A famosa teoria da nossa hibridização com Neandertais é baseada nisto. Um trabalho recente (2008) brasileiro estudou híbridos de Tartaruga-de-pente (Eretmochelys imbricata) e Tartaruga-cabeçuda (Caretta caretta) usando esta metodologia. Já foi usado em grandes gatos, para identificar híbridos (entre sub-espécies) de Leões Africanos (Panthera leo leo) e Asiáticos (Panthera leo persica), assim como híbridos entre Tigres de Bengala (Panthera tigris tigris) e Siberianos (Panthera tigris altaica).


É um fenômeno chamado de Introgressão Mitocondrial (Evolução Reticulada), ou seja, a inserção de mtDNA de uma espécie em indivíduos de outra espécie, através de hibridização pregressa, e o cruzamento deste híbrido com a população da espécie original. É um fato bastante raro em crustáceos decápodes, porque nestes, o sexo feminino é o heterogamético (WZ), e, segundo a Lei de Haldane, híbridos heterogaméticos são mais raros, frágeis e estéreis, limitando a propagação do mtDNA de linhagem materna.


Mas é uma hipótese para se explicar o que ocorreu no trabalho dos Drs. Klotz e Rintelen, sugerido pelos próprios autores: camarões com mtDNA de C. cantonensis e nDNA (fenótipo) “Bee” (ou seja, não-C. cantonensis, por exemplo de C. logemanni). São prováveis híbridos de C. cantonensis com outra(s) espécie(s) com faixas, como o C. logemanni (veja ilustração abaixo, híbrido da última linha, F4 da direita).


Dois questionamentos interessantes, o primeiro é o seguinte: se as duas espécies eram criadas juntas e se hibridizaram, porque não encontramos também o inverso? Fenótipo (nDNA) de C. cantonensis e mtDNA de, por exemplo, C. logemanni? A resposta é muito simples: um fenótipo de C. cantonensis não é um padrão “Bee”, não é atrativo do ponto de vista ornamental. Ou seja, se estes híbridos existiram, provavelmente foram eliminadas pela simples seleção do aquarista. Existem outras explicações possíveis, nem sempre os híbridos têm sobrevida e fecundidade iguais, a depender de que espécie foi o pai e qual foi a mãe. Mas a explicação mais provável é esta.




Caridina venusta, foto de Werner Klotz.



Um último aspecto importantíssimo, se houve hibridização, o esperado seria que uma parte dos camarões de aquário se agrupassem no clado C. cantonensis, e uma parte juntamente com os C. logemanni. Porém, o que se observou foi que todos os camarões ornamentais de aquário, assim como os dois Diamond Bee selvagens coletados em Hong Kong (inclusive um deles com morfologia de C. logemanni) se agruparam no clado do C. cantonensis. Nenhum se agrupou dentro do clado logemanni. Isto é bastante estranho, improvável, e fala contra esta possibilidade de hibridização.   




Ilustração mostrando hibridização e introgressão mitocondrial. No exemplo, o casal original (F0) foi de Caridina cantonensis, uma espécie sem faixas, e Caridina logemanni, uma típica espécie com faixas. Os híbridos do sexo feminino transmitem adiante o mtDNA da ancestral feminina original (C. cantonensis). Note que, após muitas gerações, como os dois híbridos da última linha (F4), o fenótipo da espécie inserida no cruzamento (C. cantonensis) se dilui, e é difícil de ser detectada. O F4 da direita é o exemplo no texto de fenótipo de C. logemanni e mtDNA de C. cantonensis. Ilustração de Walther Ishikawa.


 

2. Existe mesmo Caridina logemanni? (e mais três artigos).


No trabalho dos Drs. Klotz e Rintelen, a descrição do Caridina logemanni como espécie nova não gerava dúvida, além de claramente haver características morfológicas peculiares, havia distância genética suficiente para distingui-la da espécie-irmã Caridina cantonensis. A distância-p entre as duas espécies foi de 2,0-3,9% (16S) e 4,5-4,9% (COI), não muito alta, mas suficiente para caracterizá-la como outra espécie.


Porém, em 2018 foi publicado um outra interessante artigo, do Dr. Lai Him Chow e colegas da Universidade Chinesa de Hong Kong, intitulado Isolation and Characterization of Polymorphic Microsatellite Loci for Caridina cantonensis and Transferability Across Eight Confamilial Species (Atyidae, Decapoda), na revista Zoological Studies. Seu objetivo era, dentre outros, avaliar a diversidade genética do C. cantonensis, assim como de espécie próximas de Atyídeos, inclusive o C. logemanni.


Embora não seja destacado no texto do artigo, o trabalho traz uma informação bastante interessante para a nossa discussão. Foram analisados o mtDNA (COI) de 9 exemplares de C. cantonensis e 29 de C. logemanni (dos dois riachos descritos no trabalho original de Klotz e Rintelen, 18 e 11 indivíduos de cada riacho). Adiante, uma reprodução de parte da árvore filogenética de máxima verossimilhança gerada a partir destes dados. Mais da metade (17) dos camarões selvagens C. logemanni se agruparam geneticamente no clado C. cantonensis. Houve um claro predomínio de camarões provenientes de um dos riachos, mas alguns (2 e 3) se agruparam no outro clado. Ou seja, agora, com uma análise genética de um número maior de C. logemanni (no artigo de Klotz e Rintelen foram 2 camarões, e agora 29), mais da metade deles foram identificados geneticamente como C. cantonensis

    


Uma parte da árvore filogenética da máxima verossimilhança gerada a partir de COI, ilustração de Chow LH, et al. Zoological Studies, 2018. 57: 19. Licença Creative Commons. Para o artigo original, clique aqui.



Este trabalho também mostrou uma grande diversidade genética do C. cantonensis, fato este já demonstrado em dois outros trabalhos (Tsang 2017 e Yam 2005). Este fato tem maior importância quando lembramos que o C. cantonensis é uma espécie de reprodução especializada (o que limita a dispersão entre diferentes habitats, ou seja, baixo fluxo genético), e com ampla distribuição geográfica. Os trabalhos mostram uma grande diferença genética entre populações de diferentes riachos, e pequena diversidade genética dentro de cada população, mesmo entre riachos separados por somente alguns quilômetros, ou tributárias de uma mesma bacia. Desta forma, não seria tão absurdo pensar que o C. logemanni (e os Bees identificados como C. cantonensis) não passem de uma variante local do C. cantonensis, ou uma sub-espécie.


Este fato é lembrado pelo Dr. Klotz em um e-mail respondendo estes questionamentos, comentando também sobre outros detalhes que mostram que a conclusão não é assim tão simples (Dr. Klotz, com. pess. 23/10/2019):

"Parece que o Bee Shrimp é uma 'variante local' do C. cantonensis. Mas todos os camarões 'selvagens' dentro do agrupamento do Bee Shrimp mostram uma coloração similar que é claramente diferente do C. cantonensis da China, Hong Kong, e da porção norte do Vietnã. E a morfologia de todos os Bee Shrimp, independentemente destes serem selvagens, Crystal Red clássicos, Bee Shrimp modernos ou linhagens Taiwan foram constantemente diferentes do C. cantonensis."

"Mais tarde, eu pude coletar Bee Shrimp selvagens de dois outros córregos. Estes camarões eram semelhantes ou ao Diamond Bee Shrimp clássico (córrego 1), ou ao velho 'Color Bee' Shrimp que era vendido aqui na Alemanha nos anos 90. Estes espécimes também eram idênticos em morfologia aos Bee Shrimp do comércio de aquários, mas surpreendemente diferentes na análise 16S. Thomas explicou este fato através de introgressão causada por hibridização nos camarões do comércio, mas eu pessoalmente não acredito nisso. Por outro lado eu não tenho uma explicação clara para a topologia na árvore. Mas sabemos de situações semelhantes no gênero Neocaridina e nas espécies dos lagos centrais, onde muitas espécies são situadas erroneamente em árvores filogenéticas."    




Conclusões (agora sim!) - Identidade do Caridina “Crystal/Bee”


Muitas espécies selvagens têm um fenótipo “Crystal/Bee”. A identidade de exemplares selvagens pode ser diversas espécies. Destas, a que mais lembra o padrão mais habitual dos “Bee” selvagens é o recém descrito Caridina logemanni. Outra possibilidade para os camarões selvagens comprados em lojas é o Caridina venusta, um fato já sugerido por alguns autores Chineses, como Wang, Liang e Li em 2008.


Agora, se o camarão ornamental foi comprado em lojas, e é resultado de uma linhagem criada em cativeiro a várias gerações, a sua identidade continua em aberto. São duas as principais possibilidades:

1. Uma possibilidade é a de que sejam camarões híbridos, com o ancestral mitocondrial desta linhagem sendo o Caridina cantonensis, mesmo que esta espécie não tenha um aspecto de “Bee”. Qual (ou quais) foram as espécies que se misturaram ao C. cantonensis ainda é desconhecido. Baseado no fenótipo, e proximidade filogenética com o C. cantonensis, um forte candidato é, novamente, o C. logemanni. Desta forma, estes camarões deveriam ser chamados de Caridina sp. ou Caridina x.

2. Outra possibilidade é a de que estes Bee Shrimp (talvez até o recém-descoberto C. logemanni) sejam morfotipos, variantes locais ou sub-espécies do C. cantonensis. Se for isso mesmo, estes camarões ornamentais devem continuar a ser chamados de Caridina cantonensis, como vinham sendo chamados até a publicação do artigo.   




Assim, é um erro renomear todos os camarões previamente identificados como Caridina cf. cantonensis por Caridina logemanni, como vêm fazendo inúmeros websites, portais e fóruns de aquarismo. Pode ser que estes camarões sejam híbridos, possivelmente Caridina cantonensis x logemanni, ou que C. logemanni não seja uma espécie distinta do C. cantonensis.


 

Este trabalho nos alerta também sobre a dificuldade que pode haver na identificação de espécies baseada somente em marcadores genéticos. A Taxonomia Genética é vista por muitos (leigos, e até alguns biólogos) como uma ferramenta definitiva, a “palavra final” na identificação de espécies. Vimos que não é bem assim.


Nos dias atuais, muito se fala de uma “Taxonomia Integrada” combinando informações de múltiplas fontes, incluindo comportamento, ecologia, geografia, morfologia e dados moleculares. Mesmo a análise genética deve ser de multi-marcadores, sempre que possível.


 

Bibliografia adicional:
  • Klotz W, von Rintelen T. 2014. To “bee” or not to be—on some Ornamental Shrimp from Guangdong Province, Southern China and Hong Kong SAR, with Descriptions of Three New Species. Zootaxa. 3889(2): 151–184.
  • Palumbi SR, Cipriano F.Species identification using genetic tools: the value of nuclear and mitochondrial gene sequences in whale conservation. J Hered. 1998 Sep-Oct; 89(5): 459-64.
  • Marshall DC, Hill KB, Cooley JR, Simon C. Hybridization, mitochondrial DNA phylogeography, and prediction of the early stages of reproductive isolation: lessons from New Zealand cicadas (genus Kikihia). Syst Biol. 2011 Jul; 60(4): 482-502.
  • Shankaranarayanan P, Singh L. Mitochondrial DNA sequence divergence among big cats and their hybrids. Current Science (1998) 75 (9): 919–923.
  • Roos C, Zinner D, Kubatko LS, Schwarz C, Yang M, Meyer D, Nash SD, Xing J, Batzer MA, Brameier M, Leendertz FH, Ziegler T, Perwitasari-Farajallah D, Nadler T, Walter L, Osterholz M. Nuclear versus mitochondrial DNA: evidence for hybridization in colobine monkeys. BMC Evol Biol. 2011 Mar 24;11:77.
  • Moore WS. Inferring Phylogenies from mtDNA Variation: Mitochondrial-Gene Trees Versus Nuclear-Gene Trees. Evolution, Vol. 49, No. 4 (Aug., 1995), pp. 718-726.
  • Yang L, Tan Z, Wang D, Xue L, Guan M, Huang T, Li R (2014) Species identification through mitochondrial rRNA genetic analysis. Sci Rep 4:4089.
  • Cronin MA, Palmisciano DA, Vyse ER, Cameron DG. Mitochondrial DNA in Wildlife Forensic Science: Species Identification of Tissues. Wildlife Society Bulletin, Vol. 19, No. 1 (Spring, 1991), pp. 94-105.
  • Mason PH, Short RV. Neanderthal-human Hybrids. Hypothesis 2011, 9(1): e1.
  • Vargas SM, Soares L, Santos FR. Alelos exclusivos indicam introgressão em espécies de tartarugas marinhas. 54º Congresso Brasileiro de Genética (2008), Salvador, BA, Brasil.
  • Lecher P, Defaye D, Noel P. 1995. Chromosomes and nuclear DNA of Crustacea. Invertebrate Reproduction and Development, 27, 85-114.
  • Page TJ, Hughes JM. Neither molecular nor morphological data have all the answers; with an example from Macrobrachium (Decapoda: Palaemonidae) from Australia. 2011. Zootaxa, Vol. 2874, pp. 65-68.
  • Klotz L. Das Merkmal „Tigerschaufel“ bei zwei chinesischen Süßwassergarnelenarten - eine morphometrische Analyse. Dissertação (Admissão no Programa de Biologia e Ciências Ambientais) – Oberstufenrealgymnasium privado St. Charles Volders. Volders, Áustria, 2012.
  • Wang L, Liang X, Li F. Descriptions of four new species of Caridina (Decapoda: Atyidae) from China. 2008. Zootaxa, 1726, 49–59.
  • Chow LH, Ma KY, Hui JHL, Chu KH. Isolation and Characterization of Polymorphic Microsatellite Loci for Caridina cantonensis and Transferability Across Eight Confamilial Species (Atyidae, Decapoda). 2018. Zoological Studies 57: 19.
  • Tsang LM, Tsoi KH, Chan SKF, Chan TKT, Chu KH. Strong genetic differentiation among populations of the freshwater shrimp Caridina cantonensis in Hong Kong: implications for conservation of freshwater fauna in urban áreas. 2017. Marine & freshwater research 68 (1): 187-194.
  • Yam RSW, Dudgeon D. Genetic differentiation of Caridina cantonensis (Decapoda:Atyidae) in Hong Kong streams. 2005. Journal of the North American Benthological Society, 24(4):845-857.


Agradecimentos especiais ao Dr. Werner Klotz e Dr. Thomas von Rintelen, que forneceram uma cópia do artigo em discussão para a nossa equipe. Também, Dr Klotz gentilmente nos respondeu uma série de questionamentos sobre o artigo, transcritos aqui com a sua permissão. Agradecemos também à aquarista alemã Ulli Bauer, pelas ricas discussões que resultaram na atualização do artigo. Somos gratos também ao fotógrafo Paul Ng Y.C. por permitir usar sua imagem do Caridina cantonensis selvagem.



As ilustrações de Walther Ishikawa, University of CaliforniaConnexions Web site e aquela extraída de Chow LH, et al. 2018 estão licenciados sob uma Licença Creative Commons (veja links para imagens originais). As demais fotos têm seu "copyright" pertencendo aos respectivos autores.




Artigo publicado em 31/01/2015, última atualização em 16/11/2019

VEJA TAMBÉM
   
Genética das Cores de Caramujos “Ramshorn”
Variedades de cor e genética de Planorbídeos
Saiba mais
   
Cultivando Branchonetas
Marcio Luiz de Araujo - Cultivando Brancho...
Saiba mais
   
Expedição a Sulawesi, Indonésia (Dezembro 2007)
Relato da viagem para Sulawesi, na Indonésia
Saiba mais
   
Ampulárias - pêlos na concha, tentáculos no manto
Um curioso achado em filhotes de algumas A...
Saiba mais
   
Montando seu primeiro Aquário para Camarões
André Albuquerque - Montando seu primeiro ...
Saiba mais
   
Hibridização de Ampulárias "Asolene" x "Marisa"
Hibridização de Ampulárias "Asolene spixi"...
Saiba mais
   
“CrabWatching” em Manguezais
Observando caranguejos em manguezais e est...
Saiba mais
   
Reprodução de Pomacea diffusa
Cinthia Emerich - Reprodução de "Pomacea d...
Saiba mais
   
Ecdise do Camarão Red Cherry
Fantásticas fotos e vídeo da ecdise do Red...
Saiba mais
   
Alimentação Pedal de Nêuston pelas Ampulárias
Uma forma curiosa das Ampulárias se alimen...
Saiba mais
   
Variedades de cor na "Pomacea diffusa"
Walther Ishikawa - Genética das Variedades...
Saiba mais
   
Diferenciando Pitus e Camarões-Fantasma
Diferenciando Pitus e Camarões-Fantasma: M...
Saiba mais
 
« Voltar  
 

Planeta Invertebrados Brasil - © 2019 Todos os direitos reservados

Desenvolvimento de sites: GV8 SITES & SISTEMAS